
Session 8 Android Studio
xxx

How to make a screenshot and transfer this file to directory C:/a

1. Open some app , so you can distinguish the screenshot

adb -d shell screencap -p /sdcard/vasya.png (or any other image format like
.jpg, jpeg, bmp, etc)
2. check if vasya.png is in sdcard
adb –d shell
ls
cd sdcard
ls (to check content)
check for file

3. copy vasya.png to C:/a/
adb -d pull /sdcard/vasya.png C:/a/
check Directory C:/a/ if vasya.png is there
xx

How to record a 1 min video and move this file to C:/a/?

this command only accepts seconds (not minute listing)

Most common Video formats are : .mpeg, .mpeg4, avi...etc

1. adb -d shell screenrecord --time-limit 60 /sdcard/happy.mp4

2. check if happy.mp4 is in sdcard
adb -d shell
ls
cd sdcard
ls (to check content and look up file)

3. copy happy.mp4 to C:/a/
adb -d pull /sdcard/ happy.mp4 C:/a/
check Directory C:/a/ if happy.mp4 is there

xx

How to create directory on your Real Device

adb -d shell

ls (if you wish to create sub-directory in already existing , exp sdcard)
cd sdcard
mkdir Natalia

if not subdirectory needed , then
adb -d shell
mkdir Natalia

1. Create sub-directory in sdcard (sdcard/Natalia)
ls
cd sdcard
mkdir Natalia

exit shell (type exit)

2. Copy fish.txt to sdcard/Natalia
adb -d push C:/a/fish.txt /sdcard/Natalia

3. Find fish.txt using ls
adb -d shell
ls
cd sdcard

cd Natalia

How to remove sub-directory (if it does have files, then you have to remove files first ,
then remove sub-directory)
adb -d shell
ls
cd sdcard
cd Natalia
rm fish.txt
rmdir Natalia

or you may just use :

adb -d shell
ls
cd sdcard
rmdir –r Natalia (older Android Studio)

rm –r Natalia (current 3.1.2)
xx
How to shut down and remove your emulator

adb -s emulator-5554 emu kill or adb –e emu kill
xx

type adb devices
should see real device only

No more emulator-5554 (this means no more -d - no separation in the command line)

xx
Reboot the Real Device

adb reboot

xx

What is input keyevent ??????
You may manipulate with controls on your device
https://developer.android.com/reference/android/view/KeyEvent.html
or check another link below

Play around
adb shell

https://developer.android.com/reference/android/view/KeyEvent.html

input keyevent 26 (power off/on)
input keyevent 82 (unlock your screen)

https://stackoverflow.com/questions/7789826/adb-shell-input-events

0 --> "KEYCODE_UNKNOWN"
1 --> "KEYCODE_MENU"
2 --> "KEYCODE_SOFT_RIGHT"
3 --> "KEYCODE_HOME"
4 --> "KEYCODE_BACK"
5 --> "KEYCODE_CALL"
6 --> "KEYCODE_ENDCALL"
7 --> "KEYCODE_0"
8 --> "KEYCODE_1"
9 --> "KEYCODE_2"
10 --> "KEYCODE_3"
11 --> "KEYCODE_4"
12 --> "KEYCODE_5"
13 --> "KEYCODE_6"
14 --> "KEYCODE_7"
15 --> "KEYCODE_8"
16 --> "KEYCODE_9"

https://stackoverflow.com/questions/7789826/adb-shell-input-events

17 --> "KEYCODE_STAR"
18 --> "KEYCODE_POUND"
19 --> "KEYCODE_DPAD_UP"
20 --> "KEYCODE_DPAD_DOWN"
21 --> "KEYCODE_DPAD_LEFT"
22 --> "KEYCODE_DPAD_RIGHT"
23 --> "KEYCODE_DPAD_CENTER"
24 --> "KEYCODE_VOLUME_UP"
25 --> "KEYCODE_VOLUME_DOWN"
26 --> "KEYCODE_POWER"
27 --> "KEYCODE_CAMERA"
28 --> "KEYCODE_CLEAR"
29 --> "KEYCODE_A"
30 --> "KEYCODE_B"
31 --> "KEYCODE_C"
32 --> "KEYCODE_D"
33 --> "KEYCODE_E"
34 --> "KEYCODE_F"
35 --> "KEYCODE_G"
36 --> "KEYCODE_H"
37 --> "KEYCODE_I"
38 --> "KEYCODE_J"

39 --> "KEYCODE_K"
40 --> "KEYCODE_L"
41 --> "KEYCODE_M"
42 --> "KEYCODE_N"
43 --> "KEYCODE_O"
44 --> "KEYCODE_P"
45 --> "KEYCODE_Q"
46 --> "KEYCODE_R"
47 --> "KEYCODE_S"
48 --> "KEYCODE_T"
49 --> "KEYCODE_U"
50 --> "KEYCODE_V"
51 --> "KEYCODE_W"
52 --> "KEYCODE_X"
53 --> "KEYCODE_Y"
54 --> "KEYCODE_Z"
55 --> "KEYCODE_COMMA"
56 --> "KEYCODE_PERIOD"
57 --> "KEYCODE_ALT_LEFT"
58 --> "KEYCODE_ALT_RIGHT"
59 --> "KEYCODE_SHIFT_LEFT"
60 --> "KEYCODE_SHIFT_RIGHT"

61 --> "KEYCODE_TAB"
62 --> "KEYCODE_SPACE"
63 --> "KEYCODE_SYM"
64 --> "KEYCODE_EXPLORER"
65 --> "KEYCODE_ENVELOPE"
66 --> "KEYCODE_ENTER"
67 --> "KEYCODE_DEL"
68 --> "KEYCODE_GRAVE"
69 --> "KEYCODE_MINUS"
70 --> "KEYCODE_EQUALS"
71 --> "KEYCODE_LEFT_BRACKET"
72 --> "KEYCODE_RIGHT_BRACKET"
73 --> "KEYCODE_BACKSLASH"
74 --> "KEYCODE_SEMICOLON"
75 --> "KEYCODE_APOSTROPHE"
76 --> "KEYCODE_SLASH"
77 --> "KEYCODE_AT"
78 --> "KEYCODE_NUM"
79 --> "KEYCODE_HEADSETHOOK"
80 --> "KEYCODE_FOCUS"
81 --> "KEYCODE_PLUS"
82 --> "KEYCODE_MENU"

83 --> "KEYCODE_NOTIFICATION"
84 --> "KEYCODE_SEARCH"
85 --> "TAG_LAST_KEYCODE"

Dumpsys Commands

https://stackoverflow.com/questions/11201659/whats-the-android-adb-shell-dumpsys-tool-and-what-are-its-benefits

https://stackoverflow.com/questions/11201659/whats-the-android-adb-shell-dumpsys-tool-and-what-are-its-benefits

dumpsys is a tool that runs on Android devices and provides information about system services.

You can call dumpsys from the command line using the Android Debug Bridge (ADB) to get diagnostic output for all system

services running on a connected device.

 (Please note : Some of the services might not work on your device)

For a complete list of system services that you can use with dumpsys, use the following command:

adb shell dumpsys -l

the command below provides system data for input components, such as touchscreens or built-in keyboards:

adb shell dumpsys input

Test UI performance

Specifying the gfxinfo service provides output with performance information relating to frames of animation that are occurring

during the recording phase. The following command uses gfxinfo to gather UI performance data for a specified package

name:

You have to have your app open in order to run this command properly. We are using United APP

adb shell dumpsys gfxinfo com.united.mobile.android

To find the UID for your app, run this command:

 We are using our United APP that has a package name: com.united.mobile.android

https://developer.android.com/studio/command-line/adb.html

adb shell dumpsys package com.united.mobile.android

Then look for the line labeled userId.

For example, to find network usage for the app 'com.example.myapp', run the following command:

adb shell dumpsys package com.united.mobile.android | grep userId

if the above command line is not recognizing “grep” :

adb shell

dumpsys package com.united.mobile.android | grep userId (make sure in ID: I– is cap. d-lowercase)

Output should be similar to the following: userId=10007 gids=[3003, 1028, 1015]

Using the sample dump above, look for lines that have uid=10007.

Two such lines exist—the first indicates a mobile connection and the second indicates a Wi-Fi connection.

This is an Output example that I will be using:

 ident=[[type=WIFI, subType=COMBINED, networkId="MySSID"]] uid=10007 set=DEFAULT tag=0x0

 NetworkStatsHistory: bucketDuration=7200000

 bucketStart=1406138400000 activeTime=7200000 rxBytes=17086802 rxPackets=15387 txBytes=1214969 txPackets=8036

operations=28

Below each line, you can see the following information for each two-hour window (which bucketDuration specifies in
milliseconds):

 set=DEFAULT indicates foreground network usage, while set=BACKGROUND indicates background usage. set=ALL implies both.

 tag=0x0 indicates the socket tag associated with the traffic.

 rxBytes and rxPackets represent received bytes and received packets in the corresponding time interval.

 txBytes and txPackets represent sent (transmitted) bytes and sent packets in the corresponding time interval.

Let’s check our battery

E:\AndroidStudio\android-sdk-windows\platform-tools>adb shell dumpsys battery

This command line will give you a complete info about your battery.

OUTPUT for battery :

Current Battery Service state:

 AC powered: false

 USB powered: true

 Wireless powered: false

 Max charging current: 500000

 Max charging voltage: 5000000

 Charge counter: 1938174

 status: 2

 health: 2

 present: true

 level: 65

 scale: 100

 voltage: 4016

 temperature: 274

 technology: Li-ion

To save battery info into a log file ;

E:\AndroidStudio\android-sdk-windows\platform-tools>adb shell dumpsys battery > C:\a\battery.txt

We can run a command line to extract only info that we need. In this example : temperature

2. E:\AndroidStudio\android-sdk-windows\platform-tools>

adb shell

/$ dumpsys battery | grep temperature (extract data . In our case its “temperature”)

xxx

Inspect battery diagnostics

Specifying the batterystats service generates interesting statistical data about battery usage on a device, organized by

unique user ID (UID).

To learn how to use dumpsys to test your app for Doze and App Standby, go to Testing with Doze and App Standby.

The command for batterystats is as follows:

adb shell dumpsys batterystats options (like: --charged or --checkin)

To see a list of additional options available to batterystats, include the -h option.

The example below outputs battery usage statistics for a United app package since the device was last charged:

adb shell dumpsys batterystats --charged com.united.mobile.android

The output typically includes the following:

https://developer.android.com/training/monitoring-device-state/doze-standby.html#testing_doze_and_app_standby

 History of battery-related events

 Global statistics for the device

 Approximate power use per UID and system component

 Per-app mobile milliseconds per packet

 System UID aggregated statistics

 App UID aggregated statistics

Inspecting machine-friendly output

You can generate batterystats output in machine-readable CSV format by using the following command:

adb shell dumpsys batterystats --checkin

The following is an example of the output you should see:

9,0,i,vers,11,116,K,L

9,0,i,uid,1000,android

9,0,i,uid,1000,com.android.providers.settings

9,0,i,uid,1000,com.android.inputdevices

9,0,i,uid,1000,com.android.server.telecom

Battery-usage observations may be per-UID or system-level; data is selected for inclusion based on its usefulness in analyzing
battery performance. Each row represents an observation with the following elements:

 A dummy integer

 The user ID associated with the observation

 The aggregation mode:

 "i" for information not tied to charged/uncharged status.

 "l" for --charged (usage since last charge).

 "u" for --unplugged (usage since last unplugged). Deprecated in Android 5.1.1.

 Section identifier, which determines how to interpret subsequent values in the line.

meminfo

You can record a snapshot of how your app's memory is divided between different types of RAM allocation with the following
command:

The -d flag prints more info related to Dalvik and ART memory usage.

Example :

adb shell dumpsys meminfo com.untied.mobile.android -d

Testing with Doze and App Standby

To ensure a great experience for your users, you should test your app fully in Doze and App Standby.

Testing your app with Doze

You can test Doze mode by following these steps:

1. Configure a hardware device or virtual device with an Android 6.0 (API level 23) or higher system image.

2. Connect the device to your development machine and install your app.

3. Run your app and leave it active.

4. Force the system into idle mode by running the following command:

5. $ adb shell dumpsys deviceidle force-idle

6. When ready, exit idle mode by running the following command:

7. $ adb shell dumpsys deviceidle unforce

8. Observe the behavior of your app after you reactivate the device. Make sure the app recovers gracefully when the device exits
Doze.

Testing your app with App Standby

To test the App Standby mode with your app:

1. Configure a hardware device or virtual device with an Android 6.0 (API level 23) or higher system image.

2. Connect the device to your development machine and install your app.

3. Run your app and leave it active.

4. Force the app into App Standby mode by running the following commands:

5. $ adb shell dumpsys battery unplug

$ adb shell am set-inactive <packageName> true

6. Simulate waking your app using the following commands:

7. $ adb shell am set-inactive <packageName> false

$ adb shell am get-inactive <packageName>

8. Observe the behavior of your app after waking it. Make sure the app recovers gracefully from standby mode. In particular, you
should check if your app's Notifications and background jobs continue to function as expected.

Acceptable use cases for whitelisting

The table below highlights the acceptable use cases for requesting or being on the Battery Optimizations exceptions whitelist. In
general, your app should not be on the whitelist unless Doze or App Standby break the core function of the app or there is a
technical reason why your app cannot use FCM high-priority messages.

For more information, see Support for other use cases .

Try dumpsys command lines and practice . Examples : cpuinfo, meminfo, wifi, location, etc

https://developer.android.com/training/monitoring-device-state/doze-standby#support_for_other_use_cases

How to use Dumpsys for an application (we need to find out a package name first)

E:\AndroidStudio\android-sdk-windows\platform-tools>adb shell

OnePlus3T:/ $ pm list packages | grep calculator

package:com.oneplus.calculator (your package name has a different name)

OnePlus3T:/ $ exit

Here we go :

E:\AndroidStudio\android-sdk-windows\platform-tools>adb shell dumpsys meminfo com.oneplus.calculator

