
ADB: Android Debug Bridge 

and other Android command line tools  

 

How ADB Works  - from developer.android.com; includes all available commands 

How ADB Works - from Google Git; adb overview 

How ADB Works - from dummies.com / do not take it personally! 

 

Killing the adb server - why 

Always starting with adb devices - why 

Starting an emulator from command line 

Connecting a physical device via TCP/IP 

Command redirection 

Install, update and uninstall an application 

How to find a package name 

Collecting application logs 

Recording video from terminal/command prompt 

Taking a screenshot from terminal/command prompt 

Pull and push files from and to Android device 

Changing runtime permissions from terminal/command prompt 

Using dumpsys tool to diagnose the device (when needed) 

Some other useful commands 

Monkey tool 

And where to look for more 
  

https://developer.android.com/studio/command-line/adb
https://android.googlesource.com/platform/system/core/+/master/adb/OVERVIEW.TXT
https://www.dummies.com/web-design-development/mobile-apps/android-apps/android-emulators-or-whats-so-special-about-the-number-5554/


 

Killing the adb server - why 

“In some cases, you might need to terminate the adb server process and then restart it 

to resolve the problem (e.g., if adb does not respond to a command). 

To stop the adb server, use  

 adb kill-server  

You can then restart the server by issuing any other adb command.” 

Always starting with adb devices - why 
 
To make sure the device you are going to manipulate with is actually connected, always 
start with  
 
adb devices 
 
And then issue your next adb command 
 

Starting an emulator from command line 

emulator -list-avds - returns the list of created emulators on your machine (their names) 

emulator -avd <emulator_name> - start the emulator 

Connecting a physical device via TCP/IP  

Note: the very first link How ADB Works has the steps as well 

Steps: 

https://developer.android.com/studio/command-line/adb


1. Your phone and computer are ON THE SAME WiFi 

2. Connect your Android phone via USB 

3. adb devices 

4. adb tcpip <port_number_for_server> 

6. Disconnect device from USB 

6. adb connect 192.168.4.198:5559 -  <phone_ip>:<port_number_for_server> 

7. adb disconnect - disconnects every physical device connected this way 

 

How to find ip from command line (alternatively, search in the phone settings) 

adb -d shell ip addr show wlan0 

 

Command redirection 

adb -d <command> - sends a command to the only connected physical device 

(CONNECTED via USB) 

adb -e <command> - sends a command to the only connected emulator 

(CONNECTED via TCP/IP) 

Note: Once a physical device is connected via TCP/IP, use -e or -s <serial_number> 

command redirection option as -d sends command to devices connected via USB 

if more than one device or more than one emulator connected, use 

adb -s <serial> <command> 

For ex.,  



adb -s emulator-5554 install .apk 

 

Install, update and uninstall an application 

adb install Downloads/<file_name>.apk  - use your path to .apk 

adb devices | grep device | grep -v devices | cut -f 1 | xargs -I {} adb -s {} install  

Reinstal (updated) application  

adb install -r Downloads/<file_name>.apk  - add -r before your path to .apk 

Unistall 

adb uninstall com.adjoy.standalone.test2  - use package name 

 

How to find a package name 

adb shell pm list packages - returns the list of packages installed on the device 

adb shell pm list packages -f <app_name> - returns the package for the specific app 

adb shell pm list packages -3 -returns third party packages that were installed from Play 

store or as .apk (not pre-installed) 

Alternatively, with dumpsys. First start the app do that it is running on the foreground, then 

adb shell dumpsys window windows | grep 'mCurrentFocus' 

Returns  

mCurrentFocus=Window{2c0df8a u0 

com.adjoy.standalone.test2/com.adjoy.standalone.features.auth.AuthActivity} 

Note: Does not work for Android 10 devices  



 

 

Collecting application logs 

Logcat is a command-line tool for debugging Android applications 

adb logcat - command to start logging 

useful options: 

adb logcat -c  clears all the info that might be in buffer from the previous sessions 

adb logcat | grep ‘adjoy’ - filter the log for a particular application 

Note: On Windows machine, please use find instead of grep - for ex., find “adjoy” 

Note: If you need to grep more than one word, please do the following: 

adb logcat | grep -E "(adjoy|dabbl)" 

 

adb logcat  > file_name.txt - writes the log a text file (or -f <file_name>), for example, 

adb logcat | grep 'adjoy' > zip_code_crash.txt 

Note: On Windows machine, please use find instead of grep - for ex., find “adjoy” 

adb logcat | tee logfile.txt  - prints the output in the console and also saves to a file 

 

adb logcat tag:priority  - filtering by priority; for example, 

https://developer.android.com/studio/command-line/logcat
https://developer.android.com/studio/command-line/logcat


adb logcat *:W 

Note: Tags are defined by an app developer, use * in a tag place 

Note: if you use zsh, you need to use single quotes around the expression '*:W'   

More about filtering from the official website  

 

adb logcat  '*:W' | grep 'adjoy' > zip_code_crash.txt 

Note: On Windows machine, please use find instead of grep - for ex., find “adjoy” 

 

Recording video from terminal/command prompt  

adb shell screenrecord /sdcard/ErrorMsgRegistrationScreen.mp4 

give your files a meaningful name. You may use a bug # as a file name, too. 

Default recording time is 180 seconds (3 minutes). You may, however, change the that 

by adding following the arguments 

adb shell screenrecord --time-limit <TIME> /sdcard/ErrorMsgRegistrationScreen.mp4, 

instead of <TIME> placeholder, insert the needed time in seconds: --time-limit 120 will 

produce a 2-minute video. 

Since video is saved to sdcard, we need to "pull" it from the device 

adb pull /sdcard/ErrorMsgRegistrationScreen.mp4  - pulls to current working directory 

https://developer.android.com/studio/command-line/logcat#filteringOutput


adb pull /sdcard/ErrorMsgRegistrationScreen.mp4 /Users/tanya/Desktop - pulls to a 

specified destination  

 

If no distention directory specified, the file will be stored at your current working 

directory (to check - pwd on Mac,  cd on Windows) 

To remove a file from your device, run  

adb shell rm /sdcard/ErrorMsgRegistrationScreen.mp4 

Recording the video in Android Studio - 

https://developer.android.com/studio/debug/am-video.html?hl=en 

 

Taking a screenshot from terminal/command prompt  

adb shell screencap -p > ~/Desktop/screenshot.png  
 
-p forces screencap to use PNG format 
 
adb shell screencap /sdcard/screenshot.png - saves the screenshot to the device’s 

sdcard; always .png! You have to say it explicitly  

To pull it from device 

adb pull /sdcard/screenshot.png - is destination is not specified, goes to current working 

directory  

adb pull /sdcard/screenshot.png /Users/tanya/Desktop - pulls to the Desktop 

Remember -  we can also do it in the emulator settings and in Android Studio (under 

Logcat) with buttons.  

https://developer.android.com/studio/debug/am-video.html?hl=en


 

Pull and push files from and to Android device 

adb pull /sdcard/screenshot.png /Users/tanya/Desktop - pulls (copies) the file to the 

Desktop 

adb push /Users/tanya/Desktop/profile_image.png  /sdcard/ - push (copies) the file to 
device sdcard 

Note: You may drag and drop file from your computer to your emulator, that includes 

.apk files - an easy way to install the app 

 

Changing runtime permissions from terminal/command prompt  

To find out, what runtime permissions your app is using, run 

adb shell dumpsys package <package_name> | grep permission 

The following (partial) output under runtime permissions  

android.permission.CAMERA: granted=true 

means the user is currently allowing the app to access the camera 

 

To revoke permission, run 

adb shell pm revoke <package_name> android.permission.CAMERA 

To grant permission, run  

adb shell pm grant  <package_name> android.permission.CAMERA 

 

The same way you can revoke and grant any RUNTIME permission your application 

may require; saves time especially if working with an emulator. 



 

 

Using dumpsys tool to diagnose the device (when needed) 

 
“dumpsys is a tool that runs on Android devices and provides information about system 
services”  
 
Sometimes it could be useful to get information about a device memory or battery 
usage. You can do it this (and not only with dumpsys) 
 
How to get an info related to the battery consumption,  find out here 
How to get an info about the memory is there 
 

Some other useful commands  
 
adb shell getprop - returns the list of the devices properties; could be useful when you 
need to get, say, a device model or Android version 
 
adb shell getprop ro.build.version.release - returns Android version installed one the 
device, for example, Android 8.0 
adb shell getprop ro.build.version.sdk - returns API level, for example, 27 
 
adb shell pm clear com.adjoy.standalone.test2 - clears all package data from the 
device; after running this command, the is if it were just installed 
 
adb shell am force-stop com.adjoy.standalone.test2 - am stands for activity 
manager; the command force closes the application  
 
adb shell am  start  <package_name>/<activity_name> - starts the application from 
command line; you’d need to know what is the app’s first activity that is created on 
launch 
 
For example, 
 

https://developer.android.com/studio/command-line/dumpsys#battery
https://developer.android.com/studio/command-line/dumpsys#ViewingAllocations


adb shell am  start 
com.adjoy.standalone.test2/com.adjoy.standalone.features.auth.AuthActivity 
 
adb reboot - reboots the device  

Monkey tool 
“The Monkey is a program that runs on your emulator or device and generates 
pseudo-random streams of user events such as clicks, touches, or gestures, as well as 
a number of system-level events.”  
 
adb shell monkey -p com.adjoy.standalone  -v 500  - sends 500 random clicks and 
touches to Dabbl app 
 

And where to look for more 
 
Android command lines tools https://developer.android.com/studio/command-line 
 
Magic of ADB - a talk by Wojciech Sadurski, Google at droidcon San Francisco 2019  

 

https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/command-line
https://www.droidcon.com/media-detail?video=380854175

